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van der Waals equation of state for a fluid in a nanopore

Guillermo J. Zarragoicoechea and Vı´ctor A. Kuz
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~Received 6 July 2001; published 24 January 2002!

A generalization of the van der Waals equation of state is presented for a confined fluid in a nanopore. The
pressure in the fluid, confined in a narrow pore of infinite length, has tensorial character. From this hypothesis,
the Helmholtz free energy is constructed and expressions for the axial and transversal components of the
pressure tensor are obtained. The equations predict liquid-vapor equilibria, and a shift of the critical point with
respect to that obtained from the van der Waals bulk equation. The results are in good agreement with recent
experiments.
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I. INTRODUCTION

There is a vast knowledge about phase transitions in b
fluids. When in a given thermodynamic system the volume
reduced to microscopic levels, the equilibrium betwe
phases is no longer size independent. Confinement cha
the thermodynamic character of the fluid@1#. The pressure is
a diagonal tensor, and should be used in the descriptio
fluids at the microscopic and mesoscopic scales when e
librium between phases is analyzed.

The behavior of the fluid within a pore is of fundamen
importance in many fields. The determination of mesop
diameters or micropore volumes in a solid@2#, the pressure
in a fluid confined in a cell membrane, and the behavior
water in a channel of proteins where solutes~inorganic ions!
pass through the cell membranes@3# are problems of practi-
cal and theoretical interest. In this context it is important
mention the Kelvin equation, or some of the modern versi
of this equation@4–6#, which predict the adsorbed laye
thickness or the transition from capillary to multilayer a
sorbed phase inside the pore.

In tribology, the science of friction at the microscop
scale @7#, the phenomenon of dissipation of energy is
much concern. In a mechanically confined fluid, the ene
dissipated by friction can induce chemical transformatio
liquid-gas phase transitions, or drastic changes of static
dynamic properties like shear stress, coefficient of fricti
compressibility, and viscosity. These dynamic and sta
properties can no longer be described even qualitativel
terms of the bulk properties@8#.

Liquids confined between two surfaces or within a narr
space with dimensions smaller than 5–10 molecular dia
eters become ordered into layers, and within each layer
can also have lateral order. Across molecularly thin films
simple liquids, there is a structuring of the molecules and
exponentially decaying oscillatory force, varying between
traction and repulsion with a periodicity of the order of t
solvent molecular dimension@9#. A similar result is found in
polymeric thin films in relation to the density, which exhibi
gradually decaying oscillations@10#. A lattice-gas cellular
automata model of porous media constructed at the p
scale predicts formation of a microscopic liquid film co
densed on the solid walls in equilibrium with the gas pha
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@11#. All these analyses tacitly show that a fluid in a nano
ore has tensorial character.

Equilibrium and nonequilibrium experiments show tha
confined fluid behaves differently from the correspondi
bulk fluid. The relaxation rate of ethylene glycol versus te
perature is different in a zeolite host system from the b
fluid @12#. In pure liquid ~sulfur hexafluoride!, the experi-
ments of Thommes and Findenegg@13# determined the criti-
cal point shift in three kinds of controlled-pore glass. A dire
determination of the phase coexistence properties of flu
by Monte Carlo simulation predicts the adsorption and c
illary condensation of a simple fluid~Ar! in narrow cylindri-
cal pores (CO2). The gas-liquid critical temperature de
creases as the pore radius is reduced@14#. The same
phenomenon was observed in liquid-liquid phase equilib
by Sliwinska-Bartkowiaket al. @15#. Here the effect of con-
finement produced a lowering of the critical mixing tempe
ture and a shift in the critical mixing composition.

In relation to this general presentation, we study the pr
lem of confined fluids in a narrow pore via an extension
the van der Waals equation. The phase transitions, shift of
critical point, and critical temperatures predicted by th
theory are in good agreement with the results of experime
and numerical simulations.

II. VAN DER WAALS EQUATION FOR A CONFINED
FLUID

We assumed that the pressure in a confined fluid i
diagonal tensorP̂ with componentspii ( i 5x,y,z). The in-
ternal energy is given by@16#

dE5T dS2(
i

pii de i i V , ~1!

where the second term on the right-hand side represents
work done by the internal tension under a specific deform
tion de i i of the volumeV. From the Helmholtz free energ
F5E2TS we obtain

dF52S dT2(
i

pii de i i V ~2!
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with the components ofP̂ given by

pii 52
1

V

]F

]e i i
. ~3!

The Helmholtz free energy of a system ofN particles
interacting via a pair potentialU(r 12) ~inert walls! can be
written as

F5F02
kTN2

2V2 E E ~e2U~r 12!/kT21!dV1dV2 , ~4!

F0 being the free energy of the ideal gas. We consider
particles interacting via a Lennard-Jones potentialU(r 12)
54e@(s/r 12)

122(s/r 12)
6#. The standard van der Waa

~vdW! equation can be obtained from Eq.~4! by integrating
over an infinite volume. By following the same procedure
a finite volume, we split the integral into two regions,r 12
,s and r 12.s:

F5F02
kTN2

2V2 F E E
r 12,s

~e2U~r 12!/kT21!dV1dV2

1E E
r 12.s

~e2U~r 12!/kT21!dV1dV2G . ~5!

In the first integral we approximatee2U(r 12)/kT.0, and in
the second integrale2U(r 12)/kT.12U(r 12)/kT. With these
assumptions Eq.~5! becomes

F5F01
kTN2

V
b1

kTN2

2V2 E E
r 12.s

U~r 12!

kT
dV1dV2 ~6!

with b5 2
3 ps3 and the volumeV5LxLyLz , whereLx5Ly

5L andLz5Lz . In the thermodynamic limit, whenLz→`
and N→`, lim(LxLyLz /N)5v, the finite specific volume
By solving numerically the integral forr 12.s it is found, by
fitting the results, that it can be approximated by

1

V E E
r 12.s

U~r 12!

kT
dV1dV25

4e

kT
s3I ~A! ~7!

with I (A)5c01c1 /AA1c2 /A. A5LxLy /s2 is the re-
duced area of the square section of the pore, andc05
22.7925,c154.6571,c2522.1185. The value ofc0 ~bulk
value! was obtained by solving the integral forA5` ana-
lytically, and the values ofc1 andc2 resulted from nonlinear
fitting. The numerical values of the integral in Eq.~7! and the
fitting curve I (A) are represented in Fig. 1. Introducing th
ideal free energy in Eq.~6! and writing c052a/2es3, we
have

F5 f ~T!2NkT ln~V2Nb!

12
N2

V
es3S 2

a

2es3 1
c1

AA
1

c2

A D , ~8!
02111
e

r

where we have taken into account the limited compressib
of matter by the substitution lnV2(N/V)b5ln(V2Nb). Equa-
tion ~8! represents the Helmholtz free energy of a fluid co
fined in an axially infinite pore of cross sectionA; by using
Eq. ~3!, we obtain the components of the pressure tensoP̂:

pxx5pyy5
NkT

V2Nb
2

N2

V2 Fa2es3S 3
c1

AA
14

c2

A D G , ~9!

pzz5
NkT

V2Nb
2

N2

V2 Fa22es3S c1

AA
1

c2

A D G . ~10!

Equations~9! and ~10! represent the transverse and ax
fluid pressures in the pore, respectively. When the cross
tion goes to infinity,pxx5pyy5pzz, and the bulk vdW equa-
tion is recovered. In reduced coordinates, Eqs.~9! and ~10!
can be written as

pxx* 5pyy* 5
T*

v* 2b*
2

a* 2@3~c1 /AA!14~c2 /A!#

v* 2 ,

~11!

pzz* 5
T*

v* 2b*
2

a* 22~c1 /AA1c2 /A!

v* 2 , ~12!

with p* 5ps3/e, T* 5kT/e, v* 5(V/N)s23, b* 5bs23,
anda* 5a/es3.

From Eq.~12!, the critical parameters are given by

Tc* 5
8

27b* S a* 22
c1

AA
22

c2

A D ,

pc* 5
a* 22~c1 /AA!22~c2 /A!

27b* 2 ,

vc* 53b* . ~13!

FIG. 1. Numerical values of the integral in Eq.~7! ~filled circles!
and the fitting curveI (A) ~solid line!.
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The equations show a shift in critical temperature and p
sure with respect to those of the bulk equation.

III. RESULTS

The vdW equations~9! and ~10! give the components o
the pressure tensor for a confined fluid in a square sec
pore of infinite length. At given temperature and dens
~Fig. 2! we have a homogeneous fluid with different ax
and transverse pressurespzz* ,pxx* . On lowering the tempera
ture, maintaining the transverse section constant, a loop
pears for the axial component of the pressure~Fig. 3!. Here,
as in the bulk, phase equilibrium occurs with anxy interface
separating a homogeneous gas from a homogeneous l
~capillary transition!. Each region is consistent with the un
formity constraint used to obtain the vdW equations. Th
by applying Maxwell’s construction on the isothermpzz*
2v* , we get for the gas-liquid equilibriumpzzl* 5pzzg* , v l* ,
vg* , andpxxl* .pxxg* . At a lower temperature, the transver
component of the pressurepxx* also presents a loop~Fig. 4!.
This loop does not imply a new phase separation, given
in the derivation of the vdW equations the fluid was co
strained to be uniform on the scale of the pore transve

FIG. 2. Volume dependence of the pressure tensor compon
pxx , pyy , pzz ~full line!. The bulk pressure corresponding to th
same temperature is represented as a dashed line.

FIG. 3. Capillary condensation forT* 50.62. The Maxwell con-
struction is used to obtain the gas-liquid coexistence line.
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size; all the states represented by the loop are possible@17#.
Thus we still have a phase equilibrium characterized by
axial component of the pressure, as in the case represent
Fig. 3. In Fig. 5 the phase diagrams for two pores of differe
sizes and for the bulk fluid are shown. Lattice models a
numerical simulations@18,14# show a similar behavior, al-
though in these works the wall-fluid interaction was i
cluded. For a wall-fluid attractive interaction the critical de
sity is shifted to higher values relative to its bulk valu
whereas for repelling walls it is shifted in the opposite dire
tion @18#. In our work the fluid-wall interaction is not take
into account, so the critical density remains the same a
the bulk.

In Table I, we compare the values of the critical tempe
ture with experimental results in a mesoporous siliceo
honeycomb-type lattice~MCM-41! @19#. It is worth mention-
ing that Table I was computed without any adjustment of
parametersa* , b* , c1 , and c2 , whose values were given
above. The results are very good for Ar and N2, and accept-
able for O2 , C2H4 , and CO2.

IV. DISCUSSION

In this paper we have generalized the van der Waals b
equation for a fluid confined in a nanopore with inert wal

nts FIG. 4. As Fig. 3, forT* 50.59.

FIG. 5. Phase diagrams for two pore sections~full lines! and for
the bulk fluid.
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TABLE I. Critical temperature versus the pore radius. The values in parentheses are experimental
values@19#, and eachr pore is an average pore radius in a mesoporous MCM-41 molecular sieve. The s
section areaA in Tc* was equated to the area corresponding to the experimental cylindrical porepr pore

2 . The
values ofTc were calculated using Eq.~13! with averaged Lennard-Jones parameters@20#.

Tc ~K!

r pore ~nm! Ar N2 O2 C2H4 CO2

1.2 71.7 52.5 64.3~,71! 109.8~,142! 111.3~,161!
1.4 74.8~74! 55.0 ~,61! 67.2 ~76! 116.3~,142! 117.3~173!
1.8 79.1~87! 58.5 ~68! 71.2 ~91! 125.3~148! 125.7~195!
2.1 81.3~.86! 60.3 ~76! 73.3 ~.92! 129.9~163! 130.0~.197!
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Confinement of a system of interacting particles makes
components of the force on a given particle different. T
idea used in the standard derivation of the van der Wa
equation gives the components of the pressure tensor@Eqs.
~11! and ~12!# for a square section nanopore of infini
length. The equations predict capillary transitions and a s
of the critical parameters with respect to those of the b
equation. These results are in agreement with the beha
shown by lattice models and numerical simulations. The p
dicted critical temperatures, displayed in Table I, are in go
agreement with experimental data, specially for spher
type particles like Ar. It must be pointed out that the valu
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were calculated without any adjustment of the equation
rameters. The confined van der Waals fluid theory seem
work better than the bulk one. This may be due to the f
that the higher virial contributions not considered in eith
theory are less important in the confined fluid than in t
bulk.
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